Thursday, October 20, 2016

Bewegende Gemiddelde In Sas

Bewegende gemiddeldes: Wat is dit vir die mees gewilde tegniese aanwysers, bewegende gemiddeldes word gebruik om die rigting van die huidige tendens meet. Elke tipe bewegende gemiddelde (algemeen in hierdie handleiding as MA geskryf) is 'n wiskundige gevolg dat word bereken deur die gemiddeld van 'n aantal van die verlede datapunte. Sodra bepaal, die gevolglike gemiddelde is dan geplot op 'n grafiek, sodat die handelaars om te kyk na reëlmatige data eerder as om te fokus op die dag-tot-dag prysskommelings wat inherent in alle finansiële markte is. Die eenvoudigste vorm van 'n bewegende gemiddelde, gepas bekend as 'n eenvoudige bewegende gemiddelde (SMA), word bereken deur die rekenkundige gemiddelde van 'n gegewe stel waardes. Byvoorbeeld, 'n basiese 10-dae - bewegende gemiddelde wat jy wil voeg tot die sluiting pryse van die afgelope 10 dae en dan verdeel die gevolg van 10. In Figuur 1 te bereken, die som van die pryse vir die afgelope 10 dae (110) is gedeel deur die aantal dae (10) om te kom op die 10-dae gemiddelde. As 'n handelaar wil graag 'n 50-dag gemiddelde sien in plaas daarvan, sal dieselfde tipe berekening gemaak word, maar dit sal die pryse sluit oor die afgelope 50 dae. Die gevolglike gemiddelde hieronder (11) in ag neem die afgelope 10 datapunte om handelaars 'n idee van hoe 'n bate relatiewe is geprys om die afgelope 10 dae te gee. Miskien is jy wonder hoekom tegniese handelaars noem hierdie hulpmiddel 'n bewegende gemiddelde en nie net 'n gewone gemiddelde. Die antwoord is dat as nuwe waardes beskikbaar is, moet die oudste datapunte laat val van die stel en nuwe data punte moet kom om dit te vervang. So, is die datastel voortdurend in beweging om rekenskap te gee nuwe data soos dit beskikbaar raak. Hierdie metode van berekening verseker dat slegs die huidige inligting word verreken. In Figuur 2, sodra die nuwe waarde van 5 word by die stel, die rooi boks (wat die afgelope 10 datapunte) na regs beweeg en die laaste waarde van 15 laat val van die berekening. Omdat die relatief klein waarde van 5 die hoë waarde van 15 vervang, sou jy verwag om die gemiddeld van die datastel afname, wat dit nie sien nie, in hierdie geval van 11 tot 10. Wat Moet Bewegende Gemiddeldes lyk as die waardes van die MA is bereken, hulle geplot op 'n grafiek en dan gekoppel aan 'n bewegende gemiddelde lyn te skep. Hierdie buig lyne is algemeen op die kaarte van tegniese handelaars, maar hoe dit gebruik word kan drasties wissel (meer hieroor later). Soos jy kan sien in Figuur 3, is dit moontlik om meer as een bewegende gemiddelde om enige term voeg deur die aanpassing van die aantal tydperke gebruik word in die berekening. Hierdie buig lyne kan steurende of verwarrend lyk op die eerste, maar jy sal groei gewoond aan hulle soos die tyd gaan aan. Die rooi lyn is eenvoudig die gemiddelde prys oor die afgelope 50 dae, terwyl die blou lyn is die gemiddelde prys oor die afgelope 100 dae. Nou dat jy verstaan ​​wat 'n bewegende gemiddelde is en hoe dit lyk, goed in te voer 'n ander tipe van bewegende gemiddelde en kyk hoe dit verskil van die voorheen genoem eenvoudig bewegende gemiddelde. Die eenvoudige bewegende gemiddelde is uiters gewild onder handelaars, maar soos alle tegniese aanwysers, dit het sy kritici. Baie individue argumenteer dat die nut van die SMA is beperk omdat elke punt in die datareeks dieselfde geweeg, ongeag waar dit voorkom in die ry. Kritici argumenteer dat die mees onlangse data is belangriker as die ouer data en moet 'n groter invloed op die finale uitslag het. In reaksie op hierdie kritiek, handelaars begin om meer gewig te gee aan onlangse data, wat sedertdien gelei tot die uitvinding van die verskillende tipes van nuwe gemiddeldes, die gewildste van wat is die eksponensiële bewegende gemiddelde (EMA). (Vir verdere inligting, sien Basics gelaaide bewegende gemiddeldes en Wat is die verskil tussen 'n SMA en 'n EMO) Eksponensiële bewegende gemiddelde Die eksponensiële bewegende gemiddelde is 'n tipe van bewegende gemiddelde wat meer gewig gee aan onlangse pryse in 'n poging om dit meer ontvanklik maak om nuwe inligting. Leer die ietwat ingewikkeld vergelyking vir die berekening van 'n EMO kan onnodige vir baie handelaars wees, aangesien byna al kartering pakkette doen die berekeninge vir jou. Maar vir jou wiskunde geeks daar buite, hier is die EMO vergelyking: By die gebruik van die formule om die eerste punt van die EMO bereken, kan jy agterkom dat daar geen waarde beskikbaar is om te gebruik as die vorige EMO. Hierdie klein probleem opgelos kan word deur die begin van die berekening van 'n eenvoudige bewegende gemiddelde en die voortsetting van die bogenoemde formule van daar af. Ons het jou voorsien van 'n monster spreadsheet wat die werklike lewe voorbeelde van hoe om beide 'n eenvoudige bewegende gemiddelde en 'n eksponensiële bewegende gemiddelde te bereken sluit. Die verskil tussen die EMO en SMA Nou dat jy 'n beter begrip van hoe die SMA en die EMO bereken word, kan 'n blik op hoe hierdie gemiddeldes verskil. Deur te kyk na die berekening van die EMO, sal jy agterkom dat meer klem gelê op die onlangse data punte, maak dit 'n soort van geweegde gemiddelde. In Figuur 5, die nommers van tydperke wat in elk gemiddeld is identies (15), maar die EMO reageer vinniger by die veranderende pryse. Let op hoe die EMO het 'n hoër waarde as die prys styg, en val vinniger as die SMA wanneer die prys daal. Dit reaksie is die hoofrede waarom so baie handelaars verkies om die EMO gebruik oor die SMA. Wat doen die verskillende dae gemiddelde bewegende gemiddeldes is 'n heeltemal aanpas aanwyser, wat beteken dat die gebruiker vrylik kan kies watter tyd raam wat hulle wil wanneer die skep van die gemiddelde. Die mees algemene tydperke wat in bewegende gemiddeldes is 15, 20, 30, 50, 100 en 200 dae. Hoe korter die tydsduur wat gebruik word om die gemiddelde te skep, hoe meer sensitief sal wees om die prys veranderinge. Hoe langer die tydsverloop, hoe minder sensitief, of meer reëlmatige, die gemiddelde sal wees. Daar is geen regte tyd raam te gebruik wanneer die opstel van jou bewegende gemiddeldes. Die beste manier om uit te vind watter een werk die beste vir jou is om te eksperimenteer met 'n aantal verskillende tydperke totdat jy die een wat jou strategie pas te vind. Bewegende gemiddeldes: Hoe om dit te gebruik Skryf Nuus om te gebruik vir die nuutste insigte en ontleding Dankie vir jou inskrywing om Investopedia insigte - Nuus monster-kode use. The op die blad Full Kode illustreer hoe om die bewegende gemiddelde van 'n veranderlike te bereken deur middel van ' hele datastel, oor die afgelope n waarnemings in 'n datastel, of oor die afgelope n waarnemings binne 'n bY-groep. Hierdie voorbeeld lêers en kode voorbeelde word verskaf deur SAS Institute Inc. soos sonder enige waarborge van enige aard, hetsy uitdruklik of geïmpliseer, insluitend maar nie beperk tot die geïmpliseerde waarborge van verhandelbaarheid en geskiktheid vir 'n spesifieke doel. Ontvangers erken en aanvaar dat SAS Institute nie aanspreeklik sal wees vir enige skade hoegenaamd wat voortspruit uit die gebruik daarvan van hierdie materiaal. Daarbenewens sal SAS Institute geen ondersteuning vir die materiaal wat hierin vervat is voorsien. Hierdie voorbeeld lêers en kode voorbeelde word verskaf deur SAS Institute Inc. soos sonder enige waarborge van enige aard, hetsy uitdruklik of geïmpliseer, insluitend maar nie beperk tot die geïmpliseerde waarborge van verhandelbaarheid en geskiktheid vir 'n spesifieke doel. Ontvangers erken en aanvaar dat SAS Institute nie aanspreeklik sal wees vir enige skade hoegenaamd wat voortspruit uit die gebruik daarvan van hierdie materiaal. Daarbenewens sal SAS Institute geen ondersteuning vir die materiaal wat hierin vervat is voorsien. Bereken die bewegende gemiddelde van 'n veranderlike deur 'n hele datastel, oor die afgelope N waarnemings in 'n datastel, of oor die afgelope N waarnemings binne 'n munisipale group. Autoregressive beweeg-gemiddelde fout prosesse (ARMA foute) en ander modelle wat die volgende behels lags van die dwaling terme kan geskat word deur die gebruik van FIT state en gesimuleerde of voorspel deur gebruik te maak van LOS state. ARMA modelle vir die fout proses word dikwels gebruik vir modelle met autocorrelated residue. Die AR makro kan gebruik word om modelle met outoregressiewe fout prosesse spesifiseer. Die MA makro kan gebruik word om modelle spesifiseer met bewegende gemiddelde fout prosesse. Outoregressiewe Foute 'n model met die eerste-orde outoregressiewe foute, AR (1), het die vorm terwyl 'n AR (2) fout proses het die vorm en dies meer vir hoër-orde prosesse. Let daarop dat die e onafhanklik en identies verdeelde en het 'n verwagte waarde van 0. 'n Voorbeeld van 'n model met 'n AR (2) komponent is en dies meer vir hoër-orde prosesse. Byvoorbeeld, kan jy 'n eenvoudige lineêre regressiemodel met MA (2) skryf bewegende gemiddelde foute as waar Ma1 en Ma2 is die bewegende gemiddelde parameters. Let daarop dat RESID. Y outomaties word gedefinieer deur PROC model as die ZLAG funksie moet gebruik word vir MA modelle om die rekursie van die lags afgestomp. Dit verseker dat die vertraagde foute begin by nul in die lag priming fase en nie voort ontbrekende waardes wanneer-lag priming tydperk veranderlikes ontbreek, en dit verseker dat die toekomstige foute is nul eerder as vermis tydens simulasie of vooruitskatting. Vir meer besonderhede oor die lag funksies, sien die artikel Lag logika. Hierdie model geskryf met behulp van die MA makro is soos volg: Algemene vorm vir ARMA Models Die algemene ARMA (p, q) proses het die volgende vorm 'n ARMA (p, q) model kan gespesifiseer word soos volg: waar AR Ek en MA j verteenwoordig die outoregressiewe en bewegende gemiddelde parameters vir die verskillende lags. Jy kan enige name wat jy wil vir hierdie veranderlikes gebruik, en daar is baie soortgelyk maniere wat die spesifikasie kan geskryf word. Vektor ARMA prosesse kan ook beraam met PROC model. Konvergensie Probleme met ARMA Models ARMA modelle kan moeilik om te skat wees: Byvoorbeeld, kan 'n twee-veranderlike AR (1) proses vir die foute van die twee endogene veranderlikes Y1 en Y2 soos volg gespesifiseer word. As die parameter ramings is nie binne die toepaslike omvang, 'n bewegende gemiddelde modelle oorblywende terme groei eksponensieel. Die berekende residue vir latere waarnemings kan baie groot wees of kan oorloop. Dit kan gebeur óf omdat onbehoorlike beginspan waardes is gebruik of omdat die iterasies wegbeweeg van redelike waardes. Sorg moet gedra word in die keuse van beginspan waardes vir ARMA parameters. Begin waardes van 0.001 vir ARMA parameters gewoonlik werk as die model pas die data goed en die probleem is goed gekondisioneer. Let daarop dat 'n MA-model dikwels benader kan word deur 'n hoë-orde AR model, en omgekeerd. Dit kan lei tot 'n hoë collinearity in gemengde ARMA modelle, wat op sy beurt ernstige swak kondisionering in die berekeninge en onstabiliteit van die parameter ramings kan veroorsaak. As jy konvergensie probleme te hê, terwyl die skatte van 'n model met ARMA foute prosesse, probeer om te skat in stappe. In die eerste plek gebruik 'n geskikte verklaring aan net die strukturele parameters met die ARMA parameters gehou na nul (of om vooraf redelike raming indien beskikbaar) te skat. Volgende, gebruik 'n ander FIT verklaring slegs die ARMA parameters beraam, met behulp van die strukturele parameterwaardes van die eerste termyn. Sedert die waardes van die strukturele parameters is waarskynlik naby aan hul finale skattings te wees, kan die ARMA parameterberaming nou bymekaar. Ten slotte, gebruik 'n ander FIT verklaring aan gelyktydige skattings van al die parameters te produseer. Sedert die aanvanklike waardes van die parameters is nou waarskynlik baie naby aan hul finale gesamentlike skattings te wees, moet die skattings vinnig bymekaar as die model geskik is vir die data is. AR beginvoorwaardes Die aanvanklike lags van die fout terme van AR (p) modelle gemodelleer kan word in verskillende maniere. Die outoregressiewe fout begin metodes deur SAS / ETS prosedures is die volgende: voorwaardelike kleinste kwadrate (ARIMA en model prosedures) onvoorwaardelike kleinste kwadrate (AUTOREG, ARIMA, en model prosedures) die maksimum waarskynlikheid (AUTOREG, ARIMA, en model prosedures) Yule-Walker (AUTOREG prosedure net) Hildreth-Lu, wat (enigste model prosedure) die eerste p Waarnemings verwyder Sien Hoofstuk 8, die AUTOREG prosedure, vir 'n verduideliking en bespreking van die meriete van verskeie AR (p) begin metodes. Die CLS, ULS, ML, en HT initializations uitgevoer kan word deur PROC model. Vir AR (1) foute, kan hierdie initializations geproduseer, soos uiteengesit in Tabel 18.2. Hierdie metodes is ekwivalent in groot monsters. Table 18.2 Initializations Uitgevoer deur PROC Model: AR (1) FOUTE Die aanvanklike lags van die fout terme van MA (Q) modelle kan ook geskoei op verskillende maniere. Die volgende bewegende gemiddelde fout start-up paradigmas word ondersteun deur die ARIMA en model prosedures: onvoorwaardelike kleinstekwadrate voorwaardelike kleinstekwadrate die voorwaardelike kleinste kwadrate metode van beraming bewegende gemiddelde fout terme is nie optimaal omdat dit die aanloop probleem ignoreer. Dit verminder die doeltreffendheid van die skat, hoewel hulle onbevooroordeelde bly. Die aanvanklike uitgestel residue, die uitbreiding van voor die aanvang van die data, is veronderstel om 0, hul onvoorwaardelike verwagte waarde. Dit stel 'n verskil tussen hierdie residue en die algemene kleinstekwadrate residue vir die bewegende gemiddelde kovariansie, wat, in teenstelling met die outoregressiewe model, voortduur deur die datastel. Gewoonlik hierdie verskil konvergeer vinnig tot 0, maar vir byna noninvertible bewegende gemiddelde prosesse die konvergensie is baie stadig. Om hierdie probleem te verminder, moet jy baie data het, en die bewegende gemiddelde parameterberaming moet goed binne die omkeerbare reeks. Hierdie probleem reggestel kan word ten koste van die skryf van 'n meer komplekse program. Onvoorwaardelike kleinste kwadrate beramings vir die MA (1) proses kan geproduseer word deur die spesifiseer van die model soos volg: Moving-gemiddelde foute kan moeilik om te skat wees. Jy moet oorweeg om 'n AR (p) benadering tot die bewegende gemiddelde proses. 'N bewegende gemiddelde proses kan gewoonlik goed benader word deur 'n outoregressiewe proses as die data is nie stryk of differenced. Die AR Makro Die SAS makro AR genereer programmering state vir PROC model vir outoregressiemodelle. Die AR makro is deel van SAS / ETS sagteware, en geen spesiale opsies moet ingestel word om die makro gebruik. Die outoregressiewe proses toegepas kan word om die strukturele vergelyking foute of om die endogene reeks hulself. Die AR makro kan gebruik word vir die volgende tipes motor regressie: onbeperkte vector-motor regressie beperk vector-motor regressie Eenveranderlike motor regressie Om die foutterm van 'n vergelyking model as 'n outoregressiewe proses, gebruik die volgende stelling na die vergelyking: Byvoorbeeld, veronderstel dat Y is 'n lineêre funksie van x1, x2, en 'n AR (2) fout. Die oproepe na AR moet kom na al die vergelykings wat die proses van toepassing op: Jy sal hierdie model soos volg skryf. Die voorafgaande makro aanroeping, AR (y, 2), produseer die state getoon in die lys uitset in Figuur 18.58. Figuur 18.58 LYS Opsie Uitset vir 'n AR (2) Model Die pred voorafgegaan veranderlikes is tydelik program veranderlikes gebruik sodat die lags van die residue is die korrekte residue en nie dié geherdefinieer deur hierdie vergelyking. Let daarop dat hierdie is gelykstaande aan die state uitdruklik in die artikel Algemene Form vir ARMA Models geskryf. Jy kan ook die outoregressiewe parameters aan nul beperk by uitgesoekte lags. Byvoorbeeld, as jy outoregressiewe parameters wou by lags 1, 12, en 13, kan jy die volgende stellings gebruik: Hierdie state genereer die uitset in Figuur 18,59. Figuur 18,59 LYS Opsie Uitset vir 'n AR Model met lags op 1, 12, en 13 Die model Prosedure aanbieding van Saamgestel programkode Verklaring Geperste PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y pred. y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - PREDy) yl12 ZLAG12 (y - PREDy) yl13 ZLAG13 (y - PREDy) RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y Daar is variasies op die voorwaardelike kleinste kwadrate metode, afhangende van of waarnemings op die begin van die reeks word gebruik om op te warm die AR proses. By verstek, die AR voorwaardelike kleinste kwadrate metode gebruik al die waarnemings en aanvaar nulle vir die aanvanklike lags van outoregressiewe terme. Deur die gebruik van die opsie man, kan jy versoek dat AR gebruik die onvoorwaardelike kleinste kwadrate (ULS) of metode maksimum-waarskynlikheid (ML) plaas. Byvoorbeeld, is Besprekings van hierdie metodes wat in die artikel AR beginvoorwaardes. Deur die gebruik van die MCLS N opsie, kan jy versoek dat die eerste N Waarnemings word om skattings van die aanvanklike outoregressiewe lags bereken. In hierdie geval, die ontleding begin met waarneming N 1. Byvoorbeeld: Jy kan die AR makro gebruik om 'n outoregressiewe model toe te pas om die endogene veranderlike, in plaas van om die foutterm, deur gebruik te maak van die opsie TYPEV. Byvoorbeeld, as jy wil die vyf afgelope lags van Y toe te voeg tot die vergelyking in die vorige voorbeeld, jy kan AR gebruik om die parameters te genereer en loop deur die gebruik van die volgende stellings: Die voorafgaande stellings te genereer die uitset in Figuur 18.60. Figuur 18.60 LYS Opsie Uitset vir 'n AR model van Y Hierdie model voorspel Y as 'n lineêre kombinasie van X1, X2, 'n onderskep, en die waardes van Y in die mees onlangse vyf periodes. Onbeperkte vector-motor regressie Om die fout terme van 'n stel vergelykings as 'n vektor outoregressiewe proses te modelleer, gebruik die volgende vorm van die AR makro na die vergelykings: Die processname waarde is 'n naam wat jy verskaf vir AR om te gebruik in die maak van name vir die outoregressiewe grense. Jy kan die AR makro gebruik om verskillende AR prosesse vir verskillende stelle vergelykings model deur gebruik te maak van verskillende proses name vir elke stel. Die naam proses verseker dat die veranderlike name wat uniek is. Gebruik 'n kort processname waarde vir die proses as parameter ramings geskryf moet word om 'n uitset datastel. Die AR makro probeer parameter name minder as of gelyk aan agt karakters bou, maar dit is beperk deur die lengte van processname. wat gebruik word as 'n voorvoegsel vir die AR parameter name. Die variablelist waarde is die lys van endogene veranderlikes vir die vergelykings. Byvoorbeeld, veronderstel dat foute vir vergelykings Y1, Y2, en Y3 gegenereer deur 'n tweede-orde vektor outoregressiewe proses. wat die volgende vir Y1 en soortgelyke kode vir Y2 en Y3 genereer: Slegs die voorwaardelike kleinste kwadrate (MCLS of MCLS n) metode kan gebruik word vir vektor prosesse Jy kan die volgende stellings gebruik. Jy kan ook dieselfde vorm met beperkings wat die koëffisiëntmatriks 0 by uitgesoekte lags gebruik. Byvoorbeeld, die volgende stellings pas 'n derde-orde vektor proses om die vergelyking foute met al die koëffisiënte op lag 2 beperk tot 0 en met die koëffisiënte op lags 1 en 3 onbeperkte: Jy kan die drie reekse Y1Y3 as 'n vektor outoregressiewe proses te modelleer in die veranderlikes in plaas van in die foute deur die gebruik van die opsie TYPEV. As jy wil Y1Y3 model as 'n funksie van die verlede waardes van Y1Y3 en 'n paar eksogene veranderlikes of konstantes, kan jy AR gebruik om die state vir die lag terme te genereer. Skryf 'n vergelyking vir elke veranderlike vir die nonautoregressive deel van die model, en dan bel AR met die opsie TYPEV. Byvoorbeeld, kan die nonautoregressive deel van die model 'n funksie van eksogene veranderlikes wees, of dit kan onderskep parameters wees. As daar geen eksterne komponente om die vector-motor regressie model, insluitende geen afsnitte, dan wys nul tot elk van die veranderlikes. Daar moet 'n opdrag aan elkeen van die veranderlikes voor AR genoem. Hierdie voorbeeld modelle die vektor Y (Y1 Y2 Y3) as 'n lineêre funksie net van sy waarde in die vorige twee periodes en 'n wit geraas fout vektor. Die model het 18 (3 3 3 3) parameters. Sintaksis van die AR Makro Daar is twee gevalle van die sintaksis van die AR makro. Wanneer beperkings op 'n vektor AR proses nie nodig, die sintaksis van die AR makro het die algemene vorm spesifiseer 'n voorvoegsel vir AR om te gebruik in die bou van name van veranderlikes wat nodig is om die AR proses te definieer. As die endolist nie gespesifiseer word nie, die endogene lys standaard te noem. wat moet die naam van die vergelyking waarna die AR fout proses toegepas moet word nie. Die naam mag nie meer as 32 karakters. is aan die orde van die AR proses. spesifiseer die lys van vergelykings waarna die AR proses toegepas moet word. Indien meer as een naam word gegee, is 'n onbeperkte vektor proses geskep met die strukturele residue van al die vergelykings ingesluit as voorspellers in elk van die vergelykings. As nie gespesifiseer, verstek na endolist naam. spesifiseer die lys van sloerings waarteen die AR terme is om by te voeg. Die koëffisiënte van die terme op lags nie gelys is ingestel op 0. Al die genoteerde lags moet minder as of gelyk aan nlag wees. en daar was geen duplikate moet wees. As nie gespesifiseer, die laglist standaard vir alle lags 1 deur nlag. spesifiseer die skatting metode om te implementeer. Geldige waardes van M is CLS (voorwaardelike kleinste kwadrate beramings), ULS (onvoorwaardelike kleinste kwadrate beramings), en ML (maksimum waarskynlikheid ramings). MCLS is die standaard. Slegs MCLS toegelaat wanneer meer as een vergelyking gespesifiseer. Die ULS en ML metodes word nie ondersteun nie vir vektor AR modelle deur AR. bepaal dat die AR proses toegepas moet word om die endogene veranderlikes hulself in plaas van om die strukturele residue van die vergelykings. Beperkte vector-motor regressie Jy kan beheer wat parameters ingesluit in die proses, die beperking van tot 0 diegene parameters wat jy nie in te sluit. In die eerste plek gebruik AR met die opsie eerbiedig die veranderlike lys verklaar en die dimensie van die proses te definieer. Dan gebruik addisionele AR oproepe na terme vir geselekteerde vergelykings met geselekteerde veranderlikes by sekere lags genereer. Byvoorbeeld, die fout vergelykings geproduseer is soos volg: Hierdie model stel dat die foute vir Y1 afhang van die foute van beide Y1 en Y2 (maar nie Y3) by beide lags 1 en 2, en dat die foute vir Y2 en Y3 afhang die vorige foute vir al drie veranderlikes, maar slegs op lag 1. AR Makro Sintaksis vir Beperkte vector AR 'n alternatiewe gebruik van AR toegelaat word om beperkings op 'n vektor AR proses te lê deur AR 'n paar keer 'n beroep op verskillende AR terme spesifiseer en loop vir verskillende vergelykings. Die eerste oproep het die algemene vorm spesifiseer 'n voorvoegsel vir AR om te gebruik in die bou van name van veranderlikes wat nodig is om die vektor AR proses te definieer. spesifiseer die einde van die AR proses. spesifiseer die lys van vergelykings waarna die AR proses toegepas moet word. bepaal dat AR is nie om die AR proses te genereer, maar is om te wag vir verdere inligting wat in later AR oproepe vir die gelyknamige waarde. Die daaropvolgende oproepe het die algemene vorm is dieselfde as in die eerste oproep. spesifiseer die lys van vergelykings waarna die spesifikasies in hierdie AR oproep is wat toegepas moet word. Slegs name wat in die endolist waarde van die eerste oproep vir die naam waarde kan verskyn in die lys van vergelykings in eqlist. spesifiseer die lys van vergelykings wie uitgestel strukturele residue is om ingesluit te word as voorspellers in die vergelykings in eqlist. Slegs name in die endolist van die eerste oproep vir die naam waarde kan verskyn in varlist. As nie gespesifiseer, verstek na varlist endolist. spesifiseer die lys van sloerings waarteen die AR terme is om by te voeg. Die koëffisiënte van die terme op lags nie gelys is ingestel op 0. Al die genoteerde lags moet minder as of gelyk aan die waarde van nlag wees. en daar was geen duplikate moet wees. As nie gespesifiseer, verstek laglist al lags 1 deur nlag. Die MA Makro Die SAS makro MA genereer programmering state vir PROC model vir die verskuiwing-gemiddelde modelle. Die MA makro is deel van SAS / ETS sagteware, en geen spesiale opsies is nodig om die makro gebruik. Die bewegende gemiddelde fout proses toegepas kan word om die strukturele vergelyking foute. Die sintaksis van die MA makro is dieselfde as die AR makro behalwe daar is geen argument plekke. Wanneer jy die MA en AR makros gekombineer, moet die MA makro die AR makro volg. Die volgende SAS / IML state te produseer 'n ARMA (1, (1 3)) fout proses en stoor dit in die datastel MADAT2. Die volgende PROC MODEL state word gebruik om die parameters van hierdie model skat met behulp van maksimum waarskynlikheid fout struktuur: die skat van die parameters wat deur hierdie lopie word in Figuur 18.61. Figuur 18.61 Beramings van 'n ARMA (1, (1 3)) Proses Daar is twee gevalle van die sintaksis vir die MA makro. Wanneer beperkings op 'n vektor MA proses nie nodig, die sintaksis van die MA makro het die algemene vorm spesifiseer 'n voorvoegsel vir MA om te gebruik in die bou van name van veranderlikes wat nodig is om die MA proses te definieer en is die standaard endolist. is aan die orde van die MA-proses. spesifiseer die vergelykings waarna die MA proses toegepas moet word. Indien meer as een naam word gegee, is CLS skatting gebruik vir die vektor proses. spesifiseer die lags waarteen die MA terme is om by te voeg. Al die genoteerde lags moet minder as of gelyk aan nlag wees. en daar was geen duplikate moet wees. As nie gespesifiseer, die laglist standaard vir alle lags 1 deur nlag. spesifiseer die skatting metode om te implementeer. Geldige waardes van M is CLS (voorwaardelike kleinste kwadrate beramings), ULS (onvoorwaardelike kleinste kwadrate beramings), en ML (maksimum waarskynlikheid ramings). MCLS is die standaard. Slegs MCLS toegelaat wanneer meer as een vergelyking wat in die endolist. MA Makro Sintaksis vir Beperkte Vector bewegende gemiddeldes 'n Alternatiewe gebruik van MA toegelaat word om beperkings op 'n vektor MA proses te lê deur 'n paar keer 'n beroep MA verskillende MA terme spesifiseer en loop vir verskillende vergelykings. Die eerste oproep het die algemene vorm spesifiseer 'n voorvoegsel vir MA om te gebruik in die bou van name van veranderlikes wat nodig is om die vektor MA proses te definieer. spesifiseer die einde van die MA-proses. spesifiseer die lys van vergelykings waarna die MA proses toegepas moet word. bepaal dat MA is nie tot die MA proses te genereer, maar is om te wag vir verdere inligting wat in later MA oproepe vir die gelyknamige waarde. Die daaropvolgende oproepe het die algemene vorm is dieselfde as in die eerste oproep. spesifiseer die lys van vergelykings waarna die spesifikasies in hierdie MA oproep is wat toegepas moet word. spesifiseer die lys van vergelykings wie uitgestel strukturele residue is om ingesluit te word as voorspellers in die vergelykings in eqlist. spesifiseer die lys van sloerings waarteen die MA terme moet word added. In hierdie post, Ek wys 'n truuk te doen bewegende gemiddelde berekening (kan uitgebrei word na ander operasies waarby windows funksies) wat super vinnig. Dikwels moet SAS ontleders uit te voer bewegende gemiddelde berekening en daar is verskeie opsies wat deur die volgorde van voorkeur: 1. PROC brei 2. DATA STAP 3. PROC SQL Maar baie plekke kan nie gelisensieer SAS / ETS te gebruik PROC uit te brei en te doen bewegende gemiddelde in Data stap vereis 'n paar kodering en is fout geneig. PROC SQL is 'n natuurlike keuse vir junior programmeerders en in baie besigheid gevalle die enigste oplossing, maar SAS39s PROC SQL ontbreek windows funksies wat beskikbaar is in baie DBs te fasiliteer bewegende gemiddelde berekening is. Een tegniek mense gewoonlik gebruik is kruis aan te sluit, en dit is baie duur en nie 'n werkbare oplossing vir selfs mediumgrootte datastel. In hierdie post, ek het 'n truuk te doen bewegende gemiddelde berekening wys (kan uitgebrei word na ander operasies waarby windows funksies) wat super vinnig. Oorweeg die eenvoudigste bewegende gemiddelde berekening waar die sleep K waarnemings word by die berekening ingesluit, naamlik MA (K), hier het ons K5. Ons genereer eers 'n 20 OBS steekproefdata, waar veranderlike ID is om gebruik te word vir windows en die veranderlike X is om gebruik te word in MA berekening, en dan pas ons die standaard CROSS vat om eers die gevolglike data, Nie-Gegroepeer ondersoek, net om te verstaan ​​hoe om die data struktuur hefboom. Van die gevolglike datastel, is dit moeilik om 'n idee te kry, let39s nou sorteer quotbidquot kolom in hierdie datastel: Van hierdie gesorteer data, is dit duidelik dat ons eintlik don39t het om oor te steek Neem deel aan die hele oorspronklike datastel, maar in plaas daarvan, kan ons 'n quotoperationquot datastel wat die verskil waarde bevat genereer, en laat die oorspronklike datastel CROSS vat met hierdie baie kleiner quotoperationquot datastel, en al die data wat ons nodig het om te gebruik vir MA berekening sal daar wees. let39s nou doen: CROSS JOIN oorspronklike data met quotoperationquot data, sorteer (a. idops), wat eintlik quotbid39 in gesorteerde datastel Let daarop dat in bogenoemde kode, is dit nodig om byl vermeerder het deur b. weight sodat die data kan inter-leaved wees, anders dieselfde X waarde van oorspronklike tafel sal wees uitset en MA berekening sal misluk. Die eksplisiete gewig veranderlike eintlik voeg in meer buigsaamheid om die hele MA berekening. Terwyl die opstel van dit te wees 1 vir alle OBS gevolg in 'n eenvoudige MA berekening, toewys verskillende gewigte sal help om meer komplekse MA rekenaar op te los, soos die gee van verdere waarnemings minder gewig vir 'n verrotte MA. As verskillende K parameter in MA (K) berekeninge vereis, hoef slegs die werking datastel opgedateer wat triviale taak. Nou is die werklike kode sjabloon vir MA (K) berekening sal wees: Met hierdie nuwe metode, is dit interessant om dit te vergelyk met die duur self CROSS JOIN asook om Proc uit te brei. Op my werkstasie (Intel i5 3.8Ghz, 32GB geheue, 1TB 72K HDD), self CROSS JOIN is onbetaalbaar lang loop tyd (indien data is groot), terwyl die nuwe metode gebruik net 2X soveel tyd as PROC uit te brei, sal die tyd verbruik is triviale vergelyk om self CROSS aan te sluit. Tyd verbruik hieronder is in quotsecondquot. Hier is die kode lesers kan hardloop en vergelyk julle. Posted 10 Mei 2015 deur Liang Xie SAS Programmering vir Data MiningEasy bewegende gemiddelde gebruik van Opsomming funksie Wetenskaplikes en ingenieurs gebruik on-line sensors en meting toestelle om 'n byna oneindige verskeidenheid monitor van die proses skryf. Wanneer die ontleding van tydreeksdata gevang deur geskiedkundiges en data loggers, twee vrae opkom gereeld: Hoe kan ek bereken 'n bewegende gemiddelde en 'n verwante vraag: Hoe kan ek vlag rye na 'n gaping ontstaan ​​in my tydreeksdata JMP kan beide maklik doen, maar die antwoord vereis 'n bietjie kennis van 'n minder gereeld gebruik kolom formule funksie. Dit is dikwels maklik om 'n bewegende gemiddelde vir-time gemonsterde data te bereken. Dit beide smoor die geraas in die datastroom en laat ons het 'n gemiddelde meting waarde op 'n spesifieke tydstip. Byvoorbeeld, in die datatabel in Figuur 4, Ek het 'n on-line pH meter wat die opname van 'n meting een keer elke tweede, maar my troebelheid meter kan net teken 'n meting elke 10 sekondes. Ek kon net ooreenstem met die 10-sekonde troebelheid lees met die ooreenstemmende pH meet, maar die troebelheid lees verteenwoordig eintlik die vorige 10 sekondes wat die instrument het, en ek wil graag dit te vergelyk met 'n soortgelyke 10-tweede keer resolusie van pH. Om dit te doen, sal ek nodig het om die bewegende gemiddelde van die afgelope 10 sekondes van pH metings te bereken. Die 1-tweede resolusie en 10 sekondes bewegende gemiddeldes vergelyk word in die grafiek Bouwer plot die tabel hieronder in Figuur 5. Die tweede vraag opkom wanneer ons met behulp van bewegende gemiddeldes. Een aanname wat ons met 'n bewegende gemiddelde is dat elke meting is eweredig gespasieerde. Dit maak die bewegende gemiddelde eenvormig geweeg oor die hele tussenposes. Maar van tyd tot tyd (in die werklike lewe), is daar kort gapings in die data stroom en gapings langer as 'n paar betekenisvolle lank moet geïdentifiseer om ons te waarsku dat die aanname omgegooi het. Hierdie gapings veroorsaak word deur 'n verskeidenheid van kwessies soos kortsluitings, onderbroke drop-outs of net ontbreek data uit netwerk verbind toestelle. 'N bewegende gemiddelde kan bereken word in 'n enkele stap om die opsomming funksie in die kolom formule redakteur. Figuur 1. Opsomming funksie gebruik om 'n bewegende gemiddelde van 'n kolom met die naam pH te bereken. Soos teks, die formule in Figuur 1 is Opsomming (i 0, 9, Lag (: pH, i)) / 10 Die opsomming funksie (Figuur 1) werk soos 'n iteratiewe lus. In hierdie geval, terwyl ek tussen 0 en 9, dit word bereken dat die som van die waardes wat dit kry van die argument op die regte. Die argument op die regte geëvalueer as Lag (: pH, 0), Lag (: pH, 1), Lag (: pH, 2), Lag (: pH, 3) Lag (: pH, 9). In hierdie geval, Lag (: pH, 0) is die waarde van die huidige ry van die pH kolom, en Lag (: pH, 9) is die waarde 9 rye bokant die huidige ry (vir 'n totaal van 10 rye). Die tweede probleem is 'n bietjie lastig, en dit sal makliker wees om dit af te breek in twee stappe. In stap een, sal ons 'n formule kolom te maak om vlag die groot tyd gapings, en dan in stap twee, sal ons 'n tweede formule wat vlag 'n reeks van rye na die tyd gaping voeg. Die eerste stap is om 'n nuwe kolom genoem tydsgaping maak en voeg dan 'n formule om vlag gapings wanneer hulle langer as 5 sekondes soos so: Tyd Stempel - Lag (: tyd stempel, 1) GT 5 Of as jy wil om dit te stap Datum verskil (Lag (::. tyd stempel, 1) tyd stempel, tweede) 'n bietjie kan jy die datum verskil funksie soos hierdie gebruik GT 5 In hierdie spesifieke geval, ek wou weet wanneer die tyd gapings van 5 sekondes of langer gebeur in ander projekte, ek eintlik net nodig om te weet wanneer meer gapings plaasgevind. Die Datum verskil funksie bereken Die verskil tussen twee datum waardes en gee die resultaat in eenhede wat gebruik kan word vermeld (bv uur, minuut, dag, week, jaar). In beide gevalle, as die verskil is groter as 30, dan is die formule is geëvalueer word as 1 vir ware en 0 vir vals. In die tweede stap, maak ons ​​'n nuwe kolom noem Gap Vlag en voeg 'n formule om 10 rye te merk as gevolg van die bespeur in die kolom tyd gaping gaping. Figuur 2. Opsomming funksie gebruik om 'n numeriese vlag op te wek. Soos teks die formule in Figuur 2 is Opsomming (i 0, 9, Lag (: Tyd Gap, i)) GT 0 Weereens, die opsomming funksie (Figuur 2) werk soos 'n iteratiewe lus. Hierdie keer is dit gekombineer met 'n voorwaardelike argument. Terwyl ek is tussen 0 en 9 as die som van die waardes in die kolom Tyd gaping is groter as 0, dan is die formule geëvalueer as 1 vir ware of 0 vir vals. As daar ten minste een 1 in die gaping Tyd kolom vir die vorige 30 rye, dan is die waarde van hierdie vlag kolom is 1 ook. Met net 'n paar klein tweaked, kan ons hierdie formule stel die kleur van die ry outeur ook. Om hierdie formule te gebruik, maak 'n nuwe kolom en stel die tipe data Staat n ry. As (Opsomming (i 0, 9, Lag (: Tyd Gap, i)) GT 0, Ry Staat () Kleur Staat (rooi), Ry Staat () Kleur Staat (blou)) die opsomming funksie is 'n belangrike instrument in jou JMP toolbox, en dit kan 'n baie tyd en moeite spaar. Vir meer inligting oor sintaksis en gebruik van die opsomming funksie, check Gebruik JMP, die Scripting Guide boeke en die Scripting Index - al is gevind onder die menu Help in JMP.


No comments:

Post a Comment